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‘Medusa head ataxia’: the expanding spectrum
of Purkinje cell antibodies in autoimmune
cerebellar ataxia. Part 1: Anti-mGluR1,
anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII
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Abstract

Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia,
since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them
target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens
present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed
review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic
relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as
‘Medusa-head antibodies’ due to their characteristic somatodendritic binding pattern when tested by
immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution
immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available
assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for
PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-
metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and
anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein
kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated
calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal
growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell
antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
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Introduction
Autoimmune cerebellar ataxia (ACA) is an important differ-
ential diagnosis in patients presenting with signs and symp-
toms of cerebellar disease. Alongside multiple sclerosis
and acute disseminated encephalomyelitis, autoantibody-
associated disorders of the CNS are the most common
cause of ACA. While ACA is a rare manifestation in some
of these disorders, e.g. aquaporin-4 (AQP4) antibody-
associated neuromyelitis optica (NMO), it is the most fre-
quent or exclusive presentation in others. To date, around
30 different autoantibodies targeting brain antigens have
been reported in patients with ACA, many of which are of
paraneoplastic origin (Table 1).
When tested by immunohistochemistry (IHC) using

cerebellum tissue sections, some of these antibodies (anti-
metabotropic glutamate receptor 1 (mGluR1), anti-Homer
protein homolog 3 (Homer-3), anti-Sj/inositol 1,4,5-tris-
phosphate receptor (ITPR1), anti-carbonic anhydrase-
related protein VIII (CARP VIII), anti-protein kinase C
gamma (PKCγ), anti-Ca/RhoGTPase-activating protein 26
(ARHGAP26), anti-glutamate receptor delta 2 (GluRδ2),
anti-Tr/delta notch-like epidermal growth factor (EGF)-re-
lated receptor (DNER), voltage-gated calcium channels
(VGCC) antibodies, anti-Nb/AP3B2, anti-Yo/cerebellar
degeneration-related protein 2 (CDR2) and Purkinje cell
antibody 2 (PCA-2)) show a staining pattern resembling a
Gorgon’s head, caused by binding of IgG to Purkinje cell
(PC) somata and dendrites and are therefore often referred
to as ‘Medusa head’ antibodies (Fig. 1).
Due to their similar binding patterns, it can be very

difficult to differentiate the members of the expanding
family of somatodendritic or ‘Medusa head’ PC anti-
bodies. Here, we show exemplary IHC findings for each
of these antibodies, review the currently available diag-
nostic assays, and discuss diagnostic pitfalls. In addition,
we provide a comprehensive summary of the clinical,
paraclinical and epidemiological features associated with
these antibodies, briefly review the available knowledge
regarding their pathophysiological relevance and discuss
their oncological and prognostic implications.
The present, first article in this series will review the

current knowledge on anti-mGluR1-, anti-Homer-3-, anti-
Sj/ITPR1- and anti-CARP VIII-positive ACA.

Antibodies targeting antigens involved in the
glutamate/calcium pathway
Interestingly, most of the antigens so far identified in pa-
tients with ‘Medusa head’ antibodies—namely mGluR1,
Homer-3, ITPR1, CARP VIII, PKCγ, GluRδ2, VGCC,
CDR2-like (CDR2L), neuronal adaptin-like protein (beta-
NAP) and possibly also ARHGAP26 and CDR2—are func-
tionally and structurally related in that all are involved in
the PC phosphatidylinositol-calcium second messenger
system or, more generally, in maintaining intracellular
calcium homeostasis: In the cerebellum, release of glutam-
ate, the major excitatory neurotransmitter in the CNS, by
parallel fibre (PF) (and possibly climbing fibre (CF)) [1]
synapses stimulates postsynaptic mGluR1, which is the
main metabotropic receptor on PCs. At the PC/PF syn-
apse, this results in cleavage of phosphatidyl 4,5-bispho-
sphate (PIP2) by phospholipase Cβ3 (PLCβ3), the target of
the G proteins of mGluR1, into diacylglycerol (DAG) and
inositol 1,4,5-trisphosphate (IP3). IP3 acts as a second mes-
senger for ITPR1, a calcium channel mainly located in the
membrane of the smooth endoplasmic reticulum (ER) and
physically linked to mGluR1 via Homer-3 [1]. Upon activa-
tion by IP3, ITPR1 mediates intracellular Ca2+ release from
the ER calcium storage [1]. CARP VIII, on the other hand,
limits Ca2+ efflux from the ER by reducing the affinity of
ITPR1 for IP3 [2]. Intracellular calcium together with DAG
activates PKCγ [3], a protein kinase involved in calcium
regulation by its capability to phosphorylate and thus in-
activate the DAG-activated canonical transient receptor
potential (TRPC) type 3 cation channel 3 [4–6], resulting
in reduced influx of calcium ions [7]. GluRδ2 has been re-
cently shown to associate with mGluR1, PKCγ and TRPC3
[5, 6, 8–10] and to regulate mGluR1-mediated synaptic
transmission in PCs. ARHGAP26 has been found to pre-
cipitate with dynamin, which is involved in mGluR1 in-
ternalisation [11, 12]. Blockade of CDR2 by anti-Yo
autoantibodies has been reported to induce the expression
of PKCγ and the pore- and gating apparatus-forming
VGCC protein Cav2.1, which is an autoantigen in ACA it-
self [13, 14], and also to regulate the expression of several
other calcium-related proteins [15]. Finally, mGluR1a in-
teracts directly with Cav2.1, forming a heteromeric protein
complex [16–18] and has been shown to inhibit Cav2.1-
mediated Ca2+ currents [16, 19, 20].
Of note, mutations in almost all of the components of

the mGluR1 cascade have been demonstrated to cause
cerebellar ataxia either in humans or in animal models.
Homozygous mutations in the GRM1 gene encoding
mGluR1 underlie spinocerebellar ataxia (SCA) 13 [21]. Gq

mutant PCs remain multiply innervated by CFs and are
associated with impaired motor coordination in adult
mice [22, 23]. Phospholipase C mutant mice show defi-
cient long-term synaptic depression and impaired motor
learning [24]. Mutations in the ITPR1 gene have been
found to cause SCA15 and 21 [25]. Missense mutations in
the PKCγ gene have been found in SCA14 [26], and loss
of PKCγ also seems to play a role in SCA1 [27]. Mice defi-
cient in TRPC3 exhibit impaired walking behaviour [5].
Mutations in beta-3 spectrin influencing glutamate
receptor GluRδ2 expression as well as deletions in
the GRID2 gene itself have recently been discovered
in SCA5 and other forms of hereditary cerebellar
ataxia in humans [28, 29]. Finally, mutations in the
Cav2.1 gene cause SCA6 [30–32].



Table 1 Selected antibodies to cerebellar antigens reported in patients with cerebellar ataxia

Target structures Comments Ref

Purkinje cells

MGluR1/calcium pathway-related

Anti-mGluR1 Tumour-associated in some cases [33–36]

Anti-Homer-3 Lung cancer-associated in one unpublished cases [85, 86]

Anti-Sj/ITPR1 NSCLC-associated in one unpublished case [100]

Anti-CARP VIII Reported in association with melanoma and ovarian cancer [134, 135]

Anti-PKCγ Reported in association with SCLC and liver cancer [147, 148]

Anti-GluRδ2 Mostly para/postinfectious [149–151]

Anti-Ca/ARHGAP26 Tumour-associated in a few cases [74, 152, 153]

Anti-P/Q-type VGCC Tumour-associated in many cases [13, 14]

Anti-N type VGCC Often associated with anti-P/Q-type VGCC [154–157]

Anti-Yo/CDR2 (PCA-1)a Typical paraneoplastic syndrome [15, 158–162]

Anti-Nb/AP3B2/beta-NAP Tumour-association unknown [163, 164]

Others

PCA-2 (target antigen not known) Tumour-associated in almost all published cases [154]

Anti-Tr/DNER HD-associated in almost all cases [165–169]

Molecular and granular layer, PCs spared

Anti-amphiphysin Tumour-associated in most cases [170]

Anti-GABABR Tumour-associated in many cases [50–52]

Anti-DPPX Reported in association with B cell neoplasm in a few patients [171–174]

Anti-Caspr2 Facultatively paraneoplastic [175, 176]

Pinceau formation/Basket cells

Anti-LGI1 Mainly not tumour-associated [177]

Granular layer

Anti-GAD DM-associated (mostly DM type I) and, in neurological patients,
often tumour-associated

[119, 178–181]

Oligodendrocytes

Anti-CV2/CRMP5 Typical paraneoplastic syndrome [182–184]

Anti-MOG Usually non-paraneoplastic [185, 186]

Astrocytic endfeet

Anti-AQP4 Very rarely causing cerebellar ataxia, usually non-paraneoplastic [187, 188]

Neuronal nuclei

ANNA-1 (Anti-Hu/HuD) Neuronal nuclei in the CNS and PNS paraneoplastic [189–191]

ANNA-2 (Anti-Ri) Neuronal nuclei in the CNS paraneoplastic [192, 193]

ANNA-3 (unknown antigen) Typical paraneoplastic syndrome [194]

Anti-Zic4 Typical paraneoplastic syndrome [195, 196]

Anti-Zic2 Mostly SCLC-associated [197]

Anti-Zic1 Mostly SCLC-associated [197]

Bergman glial cell nuclei

AGNA/Anti-SOX1b Typically tumour-associated [198, 199]

Nucleoli

Anti-Ma2/Ta (PNMA2) Typical paraneoplastic syndrome [200, 201]

Anti-Ma1 (PNMA1) Typical paraneoplastic syndrome [200, 201]
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Table 1 Selected antibodies to cerebellar antigens reported in patients with cerebellar ataxia (Continued)

Centrosome

Anti-γγ-enolase, -pericentrin,
-ninein, -PCM1, -Mob1

Para-/post varicella zoster virus [202]

Centriols

Anti-centriolar antibodies Para-/post M. pneumoniae [203]

Others

Anti-transglutaminase6 Associated with celiac disease [204, 205]

Anti-triophosphate isomerase Post-EBV [206]

Anti-20 S proteasome Associated with anti-Yo [207]

Anti-GQ1b ‘Ataxic Guillaine Barré syndrome’ [208–211]

DM diabetes mellitus, HD Hodgkin’s disease
aFurther target antigens reported in the literature: CDR34, CDR3, CDR2L
bWhether AGNA and SOX1 are identical is controversial; recent evidence suggests that they may represent different reactivities
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All sections dealing with individual antibody reactiv-
ities are structured uniformly to improve accessibility
of the information provided. Each section consists of
an identically headed set of subsections dealing with
(1) clinical, paraclinical and epidemiological features
associated with the respective antibody; (2) associated
tumours; (3) syndrome outcome and prognosis; (4)
Fig. 1 Medusa-head ataxia. a Detail from Sir Peter Paul Ruben’s (1577–1640)
Museum, Vienna, Austria). b A drawing of a Purkinje cell by the Spanish patho
Ramón y Cajal (1852–1934). c Purkinje cells somata and dendrites stained by
target antigen structure and function; (5) diagnostic
IHC findings; (6) antigen-specific assays; (7) relevance
of CSF testing; (8) association with other autoanti-
bodies; (9) evidence for a pathogenic role of the anti-
body; and (10) molecular genetics, inasmuch as they
corroborate a potential role of the target antigen in
cerebellar ataxia.
famous painting of a gorgon head (dated 1617/1618; Kunsthistorisches
logist, histologist, neuroscientist, and Nobel laureate Santiago Felipe
IgG from a patient with autoimmune cerebellar ataxia
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Anti-mGluR1
Clinical, paraclinical and epidemiological features
Since the first description of anti-mGluR1 in 2000, five pa-
tients have been reported (three female, two male; median
age 50 years, range 19–69) [33–36], all of whom presented
with cerebellar gait ataxia (partly unable to walk without
help) and limb ataxia (dysmetria of arms and/or legs,
intention tremor). Further symptoms included trunk
ataxia (partly unable to sit without help, head titubation,
truncal sway) in four, dysarthria in four, and ocular symp-
toms (nystagmus, oscillopsia, diminution in speed of sac-
cades, impaired adaptation of saccadic eye movements,
difficulty directing and maintaining fixation of gaze, slight
opsoclonus) in all cases. While a subacute onset was noted
in two, symptoms worsened slowly in two other patients
(no data in one). Magnetic resonance imaging (MRI)
showed cerebellar atrophy in two patients [34, 36] and dif-
fuse abnormal hyperintensity in the whole cerebellum
present only on fluid-attenuated inversion recovery and
diffusion sequences in another case [35], but was normal
in the remaining two (follow-up for up to 6 months).
Lumbar puncture revealed mononuclear pleocytosis in
three patients (9, 28, and 190 cells/μl) and was normal in
one (no data in one case); signs of intrathecal IgG synthe-
sis were present in one of two patients examined. Add-
itional cases of ACA and mGluR1 have been identified at
the authors’ institution and elsewhere, but no additional
clinical information is currently available.
Given that mGluR1 is expressed widely throughout the

CNS, it is not surprising that two patients developed signs of
encephalitis in addition to ataxia, including mild cognitive
decline in one case and short-term memory loss in the other.
Association with tumours
In three out of five cases, anti-mGluR1 autoantibodies were
associated with malignant tumours. The two index patients
had a history of nodular sclerosing Hodgkin’s disease (HD)
but had been in remission for 2 and 9 years, respectively, at
the time of onset of anti-mGluR1-associated ACA; however,
mGluR1 was not detected in a tumoral lymph node from
one of those patients, and no tumour specimen was ana-
lysed in the second case, rendering it unclear whether the
two conditions were pathophysiologically related [33]. Sera
from patients with Hodgkin’s lymphoma but no cerebellar
ataxia did not show anti-mGluR1 [33]. A third patient
had an adenocarcinoma of the prostate, which was only dis-
covered 20 months after onset of the cerebellar ataxia, as
well as a history of a successfully treated cutaneous T cell
lymphoma. In contrast to the index cases, mGluR1 was
found to be abundantly present in the tumour tissue and
binding of the patient’s IgG to tumoral mGluR1 could be
demonstrated [34]. Two patients did not show any evidence
of a tumour up to 40 months after onset [35, 36].
Outcome and prognosis
While treatment with steroids, plasma exchange (PEX),
intravenous immunoglobulins (IVIG) and oral steroids
was followed by slow yet complete recovery in index pa-
tient 1; PEX did not result in significant improvement in
the second patient, who remained unable to walk without
support. Hodgkin’s disease remained in complete remis-
sion in both cases [33]. In a third patient, commencement
of treatment with steroids, IVIG and mycophenolate mo-
fetil early in the disease course led to continuous clinical
improvement and a drop in anti-mGluR1 serum titres
(1:20,000 to 1:500). At last follow-up, 40 months after on-
set, the patient was still able to walk [35]. In patient 4, a
transient improvement was noted after intravenous meth-
ylprednisolone (IVMP); however, subsequent courses of
IVMP were not followed by further improvement, and se-
vere and disabling ataxia and dysarthria were present at
last follow-up [36]. In patient 5, treatment of the prostate
carcinoma was associated with severe neurological deteri-
oration; later on, sustained improvement was achieved
after treatment with IVIG and low-dose steroids [34].

Antigen
MGluR1 (encoded by GRM1) is a cell surface receptor be-
longing to the guanine nucleotide-binding protein (G-pro-
tein)-activating receptor 3 family [37]. Its natural ligand is
the excitatory neurotransmitter L-glutamate. Glutamate
produces fast excitation through activation of ionotropic
glutamate receptors (GluRs, including N-methyl D-aspar-
tate (NMDA) receptors, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors and kainate
(KA) receptors) and slower actions through metabotropic
receptors (mGluRs). To date, eight mGluRs are known
(mGluR1-8). Together with mGluR5, mGluR1 forms
group I of the metabotropic glutamate receptors. So far,
five isoforms of mGluR1 have been described [37–39]
with the canonical isoform alpha being a disulphide-
linked homodimer primarily coupled to Gq/G11 [40] by
which it is linked to the inositol phospholipid metabolism,
i.e. it elicits an increase in the PIP2 turnover by activating
PLCβ to hydrolyse PIP2 to IP3 and DAG, which results in
intracellular calcium release from intracellular stores and
activation of PKCγ. Besides classical, glutamate-stimulated
activation, also agonist-independent, ‘constitutive’ activity
of mGluR1 (and mGluR5) occurs, modulated by intracel-
lular proteins including Homer-3 and Homer-1a [41].
The protein comprises an extracellular N-terminus con-

taining the glutamate binding site, seven alpha-helical
transmembrane domains and an (isoform-specific) cyto-
plasmic C-terminus—with the exception of isoform 1e,
which is truncated before the first transmembrane domain.
The G-protein-binding C-terminus contains domains that
regulate mGluR1 function/signalling as well as its localisa-
tion and subcellular distribution in the dendritic
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membrane, its trafficking and its internalisation. Import-
antly, via a cytoplasmic Homer-binding PPxxFR motif, the
receptor (more specifically, the long 1194-amino acid iso-
form 1a [42, 43]) binds Homer-3 (as well as Homer-1 and
-2), another autoantigen in ACA, which regulates the post-
synaptic localisation of mGluR1 as well as its activity [44].
In common with other mGluRs, the postsynaptic group I

mGluRs transduce stimulatory signals at excitatory synap-
ses. MGluR1 is present in the highest concentrations at the
PF/PC synapse. Upon stimulation, the receptor modulates
neuronal excitability by controlling ion channels. Modifica-
tions in the subcellular expression and distribution of
mGluR1, together with changes induced by stimulation of
mGluR1, participate in the long-term synaptic plasticity in-
volved in memory formation and learning [37]. MGluR1
regulation is believed to have an important role in both
types of long-term synaptic plasticity: while it has been
implicated in long-term depression (LTD) of synaptic effi-
cacy in the cerebellum, it is involved in long-term potenti-
ation (LTP) in the hippocampus [45–47].
The proteins with which mGluR1 is associated or inter-

acts in the cerebellum, hippocampus or cerebral cortex in-
clude, among others, TRPC, a cation channel involved in
slow excitatory cation conductance [5, 48], the P/Q-type
voltage-gated calcium channel (VGCC) (Cav2.1) [16] and
Fig. 2 Expression of mGluR1 in the human cerebellum as demonstrated by
database [101])
gamma-aminobutyric acid type B receptors [49], which
are both known target autoantigens in patients with ACA
themselves [13, 50–52], NMDA receptors [53, 54], an im-
portant autoantigen in autoimmune encephalitis [55], and
adenosine A1 receptor [56].
Outside the cerebellum, mGluR1 has been found in mitral

and tufted cells of the olfactory bulb [57] and, at lower levels,
in the hippocampus [58], the amygdala, the hypothalamus,
where they take part in regulating circadian rhythms [59]
and hormone secretion [60], the basal ganglia including the
subthalamic nucleus, the thalamus, where it is involved in
processing of nociception and pain and of other sensory in-
formation [61–64], and the ventral horn, central grey, sub-
stantia gelatinosa and sensory trigeminal nuclei of the spinal
cord, where it is also implicated in nociception, as well as in
the cerebral cortex and brainstem [38, 65, 66]; mGluR1 has
important physiological roles also in motor neurons [67–69].

Immunohistochemistry
As indicated above, mGluR1 is widely expressed through-
out the central nervous system, mostly postsynaptically in
neuronal dendrites and somata [38, 70, 71]. Within the
cerebellum, it is enriched in PCs, with the highest levels in
the dendritic spines (Fig. 2) [38, 58, 65]; in addition,
granular cells and other interneurons seem to express
IHC (modified image from the Human Protein Atlas image
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mGluR1 at lower RNA and protein levels [58, 66, 72, 73].
Makoff et al. [39] found mGluR1c exclusively in granule
cells by in situ hybridisation, while an mGLUR1a/
mGLUR1b probe reacted in addition with PCs and basket
cells. Mateos et al. [71] found both mGluR1a and
mGluR1b by immunogold labelling in the dendritic spines
of PCs receiving PF synaptic terminals and reported add-
itional peri-extrasynaptic mGluR1a/b expression.
Anti-mGluR1 autoantibodies were originally detected by

avidin-biotin peroxidase and avidin Texas red IHC, re-
spectively, using formalin-perfused sections of mouse and
human cerebellum [33]. The patients’ sera strongly stained
PC bodies and dendrites (but not the PC axons). Using
confocal microscopy, a strong punctate staining in the
molecular layer of the cerebellum was observed, indicative
of labelling of the PC spines. Later studies used mouse, rat
or primate brain sections (formalin fixed in three studies,
not specified in another one) and either conventional IHC
or indirect immunofluorescence (IIF) and reported a simi-
lar binding pattern [34–36, 74]. The punctate staining
Fig. 3 Binding of serum anti-mGluR1 from patients with ACA to rat (panels
Patient antibodies were detected by use of goat anti-human IgG secondar
(panel b: avidin/peroxidase; panel c: avidin/Texas red). While anti-mGluR1 s
in intensity depending on detection methods and antibody titres (compare
obtained from Massachusetts Medical Society. Copyright © (2000) Massach
ataxia due to autoantibodies against a glutamate receptor. N Engl J Med. 2
seen with anti-mGluR1-positive sera was considered dif-
ferent from that reported for anti-Tr [35]. Outside the
cerebellum, strong staining of neurons and neuropil was
observed in the glomeruli of the olfactory bulb, the olfac-
tory tubercle (including the islands of Calleja), the superfi-
cial layer of the cerebral cortex, the thalamus, the superior
colliculus, the spinal trigeminal nucleus and the CA3 area
[33] and dentate gyrus [34] of the hippocampus. See Fig. 3
for typical IHC findings.

Antigen-specific assays
A cell-based assay (CBA) employing human embryonic
kidney 293 (HEK293) cells transfected with human
mGluR1a (Euroimmun, Luebeck, Germany) is available at
the authors’ institution for use in scientific studies. Several
other HEK293 or Chinese hamster ovary (CHO) in-house
CBAs employing rat, mouse or human mGluR1 have been
reported [33–36]. The patient antibodies were shown to
bind to isoform a in at least two studies (not specified in
the remaining studies) [33, 34]. Other approaches to
a and d) and mouse (panels b and c) cerebellum tissue sections.
y antibodies labelled with Alexa Fluor®488 (panel a and d) or biotin
trongly stain the molecular layer (a-d), staining of the PC somata varies
panels a and c to panels b and d). Permission for panels b and c

usetts Medical Society. Sillevis Smitt et al., Paraneoplastic cerebellar
000; 342:21-27
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demonstrate specificity for mGluR1 included the use of
cerebellum sections obtained from mGluR1-knockout
mice, resulting in abolition of the typical staining pattern
[33, 35], and an mGluR1 inhibition assay based on meas-
urement of the glutamate-stimulated formation of inositol
phosphates in CHO-transfected cells before and after in-
cubation with patient serum [33].

CSF testing
The two index patients were positive for mGluR1 both in
serum and in the CSF. However, titres per unit of IgG were
31 and 36 times as high in the CSF as in serum, indicating
intrathecal synthesis [33]. In a third patient, a serum titre
of 1:20,000 and a CSF titre of 1:500 were found in a
fluorescence-based IHC assay [35]. CSF samples also tested
positive in four studies of mGluR1-specific CBAs [33–36].

Association with other autoantibodies
No association of anti-mGluR1 antibodies with other anti-
neural antibodies (including anti-Hu, -Yo, -Ri, -Tr, -CV2/
CRMP5, -Ma/Ta, -glutamic acid decarboxylase (GAD),
-NMDAR, -AMPAR, -GABABR, -glycine receptors,
leucine-rich, glioma inactivated 1 (LGI1), contactin-
associated protein-2 (CASPR2), -amphiphysin, -Homer-3
and –Tr/DNER) has been found so far [33–36]. Cross-
reactivity with the structurally closely related mGluR5 re-
ceptor was excluded in three patients using HEK293- or
CHO-based CBAs [33, 36].

Pathogenetic relevance
As a plasma membrane protein with a large extracellular
domain [38, 39], mGluR1 is accessible to circulating
IgG. Three independent studies consistently showed that
anti-mGluR1 indeed targets the N-terminal, ligand-
binding extracellular domain of native mGluR1a as indi-
cated by their binding to living, i.e. unfixed, CHO or
HEK cells expressing mGluR1 and by the lack of effect
of anti-mGluR1 on PC function if injected intracellularly
instead of being added extracellularly [33, 34, 75].
In contrast to most other antibodies discussed here,

passive transfer experiments have been performed and
strongly indicated a direct pathogenic effect of the anti-
body. Transfer of anti-mGluR1 into the subarachnoid
space of normal mice, near the cerebellum, causes in-
creasing ataxia with a wide and uncoordinated, irregular
gait and a pathological rotorod test. The most strongly
affected mice could hardly stand up owing to severe
truncal ataxia [33]. Post-mortem analysis showed IgG
deposits mainly in the cerebellum, including the cerebel-
lar cortex [33]. The fact that antibodies eluted from
mGluR1a-expressing CHO cells incubated with patient
serum caused similar ataxic symptoms, while sera pread-
sorbed with such cells did not, proves that the effects
were elicited by anti-mGluR1 and not by other anti-
bodies potentially present in the patient serum [33].
As no freshly frozen human serum was co-injected as

complement source and as the effect set in after a very
short time and spontaneously subsided after 24 h, it is
likely that ataxia was caused by functional blocking of
mGluR1. Evidence for a functional impact of anti-mGluR1
on the receptor also comes from the demonstration of a
dose-dependent decrease in glutamate-induced inositol
phosphate formation following incubation of mGluR1a-
expressing CHO cells with patient (but not control) IgG
[33]. Similarly, IgG from anti-mGluR1-positive serum
acutely reduced the holding inward current of PC in a
slice culture model and markedly suppressed the inward
current induced by (RS)-3,5-dihydroxyphenylglycine
(DHPG), a selective agonist for group I mGluRs. The lat-
ter effect was reversible by a 20- to 40-min wash [75].
When incubated with spontaneously (unstimulated) firing
PCs, a slight hyperpolarisation and thus hypoexcitability
and a significant reduction in the action potential firing
rate was noted [75]. Moreover, when applied in vivo
directly to the flocculus of mice by a minipump, anti-
mGluR1 (but not control IgG) strongly and acutely dis-
turbed the visual component of compensatory eye move-
ments as indicated by a reduction in the amplitude of the
optokinetic reflex as well as the vestibulo–ocular reflex re-
sponse in light; the effect was reversible by removal of the
pump [75]. Finally, application of mGluR1 to cultured em-
bryonic mouse PC during LTD induction strongly attenu-
ated the LTD-defining decrease in the amplitude of the
excitatory postsynaptic current following glutamate/de-
polarisation conjunctive stimulation at the PF/PC synapse
[75]. While the calcium influx was unaltered, calcium mo-
bilisation was significantly reduced, in line with the reduc-
tion in mGluR1-mediated inward current and the
reduction of phosphatidylinositol turnover measured in
mGluR1-expressing CHO cells [75].
Whether complement- or cell-mediated, antibody-

related cytotoxicity is involved in the pathogenesis,
in vivo has not been investigated thus far. Considering
the prominent role of group I mGluRs in neuroprotec-
tion, blockade of the receptor might result in PC cell
loss also in the absence of a strong immune reaction
[76–78]. Coesmans et al. [75] indeed found an (up to
two third) decrease in the density of PCs in all parts of
the cerebellar hemispheres and vermis in a post-mortem
analysis of a patient, who had died from cardiac infarc-
tion. Of note, no signs of an ongoing inflammation (in-
cluding cytotoxic CD8+ T lymphocytes previously
reported in other types of ACA) were noted despite se-
vere persisting ataxia at the time of death. In areas with
PC loss, reactive Bergmann gliosis was present [75].
Moreover, PC morphology was affected with the den-
dritic trees of the remaining PCs being severely
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amputated [75]. In accordance with that finding, cerebel-
lar atrophy indirectly indicating cell loss was detected by
MRI in two further patients [34, 36].
Indirect evidence for a pathogenic role of the antibody

comes from the demonstration of mGluR1-specific
plasma cell clones within the CNS [33, 35] and from the
fact that fading of ataxia after immunotherapy was paral-
leled by disappearance of the antibody [33]; by contrast,
persistence of ataxia was accompanied by persisting
serum and CSF anti-mGluR1 in a second patient [33].
Considering that only a subset of patients with

mGluR1 reported so far had an accompanying tumour
and that the receptor was not detectable in tumour sam-
ples renders a simple paraneoplastic aetiology caused to
ectopic protein expression unlikely.
Molecular genetics
A pathogenic impact of anti-mGluR1 is also supported by
molecular genetic findings linking mGluR1 dysfunction to
cerebellar ataxia. Most importantly, autosomal recessive
spinocerebellar ataxia-13 (SCA13) has been found to be
caused by a complex homozygous mutation in the GRM1
gene encoding mGluR1 that results in aberrant transcripts
lacking important functional domains [21]. SCA13 is a
slowly progressive CNS disorder with onset in infancy that
is characterised by moderate to severe gait, stance and limb
ataxia with dysmetria, tremor, dysdiadochokinesia and dys-
arthria, and generalised cerebellar atrophy on MRI with
small inferior vermis and retrocerebellar cysts, eye move-
ment abnormalities (horizontal nystagmus, hypometric
saccades, abduction deficits, esotropia, ptosis), mild to pro-
found mental retardation with ventriculomegaly and/or
generalised brain atrophy, poor or absent speech, and, in
some, hyperreflexia and/or seizures [21].
Mutations in the mGluR1 gene cause cerebellar ataxia

also in mice: A spontaneous mutation in the ligand-
binding region of mGluR1 has been found to underlie
ataxia in the recoil wobbler (rcw) strain of ataxic mouse
[79]. Disruption of mGluR1 in mice by homologous
recombination-mediated gene targeting was associated
with atactic gait and intention tremor, although the gross
anatomy of the cerebellum was widely normal, as was
the excitatory synaptic transmission from PFs and CFs
to PCs [46]. However, LTD (but not short-term synaptic
plasticity) is clearly impaired in mGluR−/− mice [46], and
multiple (instead of single) innervation of CFs to PCs
was observed [46, 80–82]. Similarly, no basic anatomical
abnormalities were found in the hippocampus in mGluR1-
deficient mice [45]; in contrast to the cerebellum, LTD was
intact, but (mossy fibre) LTP and learning were impaired
[45, 80, 83]. In rescue mice, all effects could be re-
versed in a dose-dependent manner by reconstitution
of mGluR1 signalling [84].
Testing for spinocerebellar ataxia (SCA; types 1, 2, 3, 6, 7
and 17), Friedreich’s ataxia (FRDA), and fragile-X tremor-
ataxia syndrome (FXTAS) has been carried out in one pa-
tient with mGluR1 antibodies and was negative [36].

Anti-Homer-3
Clinical, paraclinical and epidemiological features
The index patient (65/F) presented with vertigo, vomiting,
dysarthria and severe subacute limb and gait ataxia. Ataxia
was irreversible [85]. A second patient (38/M) also pre-
sented with nausea, vomiting and a pancerebellar syn-
drome but, in addition, developed signs of encephalitis
including drowsiness, confusion and complex partial sei-
zures. In this patient, elevated opening pressure and papil-
loedema was noted [86]. CSF analysis revealed lymphocytic
pleocytosis in both cases (29 and 60 cells/μl); signs of intra-
thecal IgG synthesis were present in one patient. Brain
MRI was normal at first examination in both patients, with
no available follow-up in patient 1 and mild atrophy of the
vermis and cerebellar hemispheres in patient 2 after
10 months. Onset of disease was subacute in both cases.
Two additional (as yet unpublished) cases of ACA and
Homer-3 antibodies have recently been diagnosed by us.
No evidence has been found for a role of anti-Homer-3 in
patients with chronic cerebellar ataxia (n = 27), patients
with opsoclonus–myoclonus syndrome (n = 20) or healthy
subjects (n = 20) [85, 86].

Association with tumours
Repeat tumour screening was negative in both published
patients, with a follow-up period of 6 years in patient 1.
One of the two as yet unpublished patients diagnosed at
our laboratory had lung cancer (no data in the second),
but no more detailed information is available.

Outcome and prognosis
While patient 1 did not respond to steroids, partial im-
provement was noted in patient 2 following treatment
with IVIG and steroids. At last follow-up (72 and
24 months, respectively), patient 1 had severe ataxia, but
patient 2 was still able to walk without help and carry out
basic daily activities independently. It has been speculated
that the suboptimal treatment response in patient 1 was
due to the fact that significant Purkinje cell loss may occur
very early in the clinical course, as seen in other antibody-
mediated forms of ACA such as anti-Yo syndrome [86].

Antigen
Homer-3 is a constitutively expressed member of the
Homer family of postsynaptic density (PSD) scaffolding pro-
teins, which are characterised by enabled/vasodilator-stimu-
lated phosphoprotein homology 1 (EVH1) domains. The
EVH1 domain binds ligands on other proteins, including
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group I mGluRs, IP3 receptors, ryanodine receptors and
Shank proteins. Homer-3 is thought to cross-link the cyto-
plasmic C-terminus of mGluR1 (especially the mGluR1a
isoform [42, 43]) to ITPR1, both of which contain a
proline-rich ‘Homer ligand’ (PPXXFR) [42]. Five isoforms
of Homer-3 produced by alternative splicing are known to
date in human. Besides Homer-3, two other Homer proteins
with several isoforms have been described [42, 44, 87–90].
The various Homer proteins and isoforms are thought
to modify differentially synaptic mGluR properties includ-
ing mGluR1 clustering, mGluR1-ITPR linkage and,
functionally, the capability of mGluRs to trigger calcium
responses [42–44, 91, 92]. Ango et al. [41] suggested that
Homer-3 prevents the so-called agonist (glutamate)-inde-
pendent, constitutive activity specifically observed with iso-
form a of the mGluR1 receptor [93]. In the cerebellum,
Homer-3 co-immunoprecipitates with structurally highly
related Homer-1b [94], which influences translocation of
the mGluRs from the ER to the plasma membrane, as well
as with mGluR1 and ITPR1 [42]. Homer-3 may be regu-
lated to some extent by the immediate-early gene product
Homer-1a, its direct competitor on mGluR1a, which dis-
rupts its binding to that receptor [41]. The coupling func-
tion of Homer-3 and thus the postsynaptic molecular
architecture in response to synaptic activity in PCs has
Fig. 4 Expression of Homer-3 in the human cerebellum as demonstrated b
[101]). Note that the main panel and the inset show different sectional plan
been proposed to be regulated by calcium/calmodulin-
dependent protein kinase II (CaMKII)-mediated phosphor-
ylation [95]. While non-phosphorylated Homer-3 is found
mainly in the PSD, phosphorylated Homer-3 was found
mainly in the cytosolic fraction [95]. Together with Shank,
the Homer proteins form a mesh-like matrix structure that
has been proposed to serve as a structural framework and
as an assembly platform for other PSD proteins [96–99]. A
coiled-coil domain near the C-terminus allows formation
of multimeric structures within the Homer family, and tet-
ramerised Homer proteins are assumed to be required for
structural integrity of the dendritic spines and recruitment
of proteins to synapses [96].

Immunohistochemistry
Homer-3 is expressed at high level in PCs, where it is
enriched in the dendritic spines, more precisely in the
PSD of the PC/PF synapses (Fig. 4). However, it is also
present in the somata and has been found in PC axons
[89]. At lower levels, Homer-3 is expressed also in the
cortex and hippocampus. In the latter, it is predomin-
antly localised in the CA2 and CA3 regions (in contrast
to Homer 1 and 2, which are more strongly expressed in
the CA1 and CA2 regions) [89]. Outside the CNS,
Homer-3 has been detected in thymus and lung. Using
y IHC (modified image from the Human Protein Atlas image database
es
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conventional biotin-avidin IHC on paraformaldehyde-
fixed rat and human cerebellum tissue sections, binding
of IgG from anti-Homer-3-positive sera to the molecular
layer and, less intensely, the PC cytoplasm (but no other
brain regions) has been found [85, 86]. Anti-Homer-3
autoantibodies are also detectable by IIF on unfixed or
formalin-fixed frozen sections of mouse, rat or primate
cerebellum tissue (Fig. 5).
Antigen-specific assays
Currently, a CBA employing HEK293 transfected with hu-
man Homer-3 (Euroimmun), a mixed phage display assay
[85], Western blot assays using cerebellum sections from
primate [74], rat, wild-type (47 kDa) and Homer-3-
deficient mice [85] and an immunoblot assay employing a
glutathione S-transferase-tagged Homer-3 [86] are avail-
able for use in scientific studies. A competitive inhibition
IHC assay has been used to distinguish Homer-3 from
mGluR1 [85].
Fig. 5 Binding of anti-Homer-3 antibody from a patient with ACA to a mo
use of a goat anti-human IgG secondary antibody labelled with Alexa Fluo
CSF testing
CSF was not analysed for anti-Homer-3 in the only two
patients whose cases have been published thus far.

Association with other autoantibodies
Anti-Homer-3 autoantibodies were not found in 32 sera
from patients with other antibody-associated CNS disor-
ders (14× anti-Tr, 17× anti-GAD, 1× anti-mGluR1). Con-
versely, anti-Homer-3-positive patients were reported to
be negative for anti-Hu, -Yo, -Ri, -Ma1/2, -CV2/CRMP5,
-Tr, -GAD, -amphiphysin and/or -NMDAR, -AMPAR,
-GABABR, -mGluR1, -mGluR5, -LGI1 and -CASPR2.

Pathogenetic relevance
While the intracellular location of Homer-3 renders
antibody-dependent cell- or complement-mediated cyto-
toxicity unlikely, the broad spectrum of functions and
interactions of Homer-3 within PCs makes a functional
impact of incorporated anti-Homer-3 IgG at least con-
ceivable. Among other effects, blocking the interaction
use cerebellum tissue section. The patient antibody was detected by
r®488 (green)
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of Homer-3 with mGluR1a in PC could increase consti-
tutive mGluR1 activity, as indicated by spontaneous in-
ositol phosphate formation and spontaneous activity of
calcium-dependent big K+ channel activity following
Homer-3 knock-down in a cell culture model [41]. Pas-
sive transfer experiments that alone could prove a
pathogenic effect of anti-Homer-3 are lacking so far.
Molecular genetics
To date, no mutations in the HOMER3 gene have been
described in patients with SCA or other diseases.
Anti-Sj/ITPR1
Clinical, paraclinical and epidemiological features
Anti-ITPR1 (also termed anti-Sj) autoantibodies were
first identified in 2010 and reported in 2014 [100]. So
far, only four patients with anti-Sj/ITPR1 have been pub-
lished, all of whom had cerebellar ataxia; however, we
have identified another eight (as yet unpublished) cases
in the meantime. Detailed clinical data are available only
from a single case, a 28-year-old woman with a 10-year
history of progressive ataxia of the upper limbs, dysarth-
ria and gaze disturbances. MRI showed moderate cere-
bellar atrophy.
Fig. 6 Expression of ITPR1 in the human cerebellum as demonstrated by IH
antibodies, HPA016487). Modified image from the Human Protein Atlas ima
Association with tumours
The only patient with available data tested positive for a
BRCA1 (breast cancer 1, early onset) gene mutation,
which is associated with increased risk of cancer, but ex-
tensive tumour screening was negative. ITPR1 expres-
sion has been observed in breast cancer, liver cancer,
lung cancer, melanoma, and lymphoma tissue by IHC as
well as in a number of tumour cell lines [101].

Outcome and prognosis
The disease did not respond to steroids and ten cycles of
PEX, but progression spontaneously came to a halt
3 years later. At last follow-up (9 years after onset), the
patient was still able to work full-time in an office.

Antigen
ITPR1 (also termed IP3RI) is a ligand-gated non-selective
cationic channel with sequence and functional homology
with the ryanodine receptor. It is specifically gated by
inositol 1,4,5-trisphosphate (IP3), a second messenger
produced by phospholipase C through a G protein-
dependent mechanism. ITPR1 is enriched in PCs (Fig. 6)
[102–104], where it is expressed mainly in the smooth ER
membrane (and to a lesser degree on rough ER and nu-
clear envelope). Being involved in postsynaptic calcium
C using an affinity-isolated rabbit antibody to human ITPR1 (Atlas
ge database [101]
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responses by triggering Ca2+ release from the smooth ER
as the main intracellular Ca2+ store following stimulation
of mGluR1, to which it is physically coupled by Homer-3,
ITPR1 plays an essential role in PC function.
To date, eight isoforms of ITPR1 produced by alterna-

tive splicing have been described [105]. Besides its IP3-
binding domain, which is located near the N-terminus,
ITPR1 contains a transmembrane spanning domain near
the C-terminus, a coupling domain in the middle of the
molecule, at least two consensus protein kinase A phos-
phorylation sites and at least one consensus ATP-binding
site [105]. Among the many proteins suggested to interact
with ITPR1, CARP VIII and IP3R-binding protein released
with IP3 (IRBIT) regulate its IP3 sensitivity [2, 106].
Fig. 7 Binding of IgG from a patient with ITPR1-Ab-positive ACA as determ
tissue. Human IgG was detected using a goat anti-human IgG secondary a
Of note, ITPR1-mediated release of Ca2+ from the ER
also plays an important role in the induction of apoptosis
[107–109]. Accordingly, inhibition or loss of inositol tris-
phosphate receptors [110–112] as well as mutation in the
N-terminal suppressor/coupling domain of ITPR1 have
been shown to suppress apoptosis [113].

Immunohistochemistry
When tested by indirect immunofluorescence using
snap-frozen cerebellum sections, anti-Sj/ITPR1 anti-
bodies selectively bound to the entire dendritic tree in
the cerebellar molecular layer including the dendritic
spines [100, 102, 103] (Fig. 7), to the PC somata in the
cerebellar PC layer, to the PC axons in the granular layer
ined in a recombinant cell-based assay to formalin-fixed rat cerebellum
ntibody labelled with Alexa Fluor®488 (green fluorescence)
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and the white matter and to the axonal terminals in the
deep cerebellar nuclei. By contrast, granular cells, inter-
neurons in the molecular layer and in the granular layer,
the Bergman glial cells in the PC layer and the astrocytic
and oligodendrocytic glial cells of the granular layer are
spared. Anti-Sj/ITPR1 causes markedly stronger staining
of the PC somata (somata ≥ dendrites) than anti-Ca/
ARHGAP26 (somata < dendrites). In our experience,
mouse and rat tissues seem to be more sensitive than
primate tissue.
ITPR1 has also been detected in neurons in the CA1 re-

gion of the hippocampus, in the caudate nucleus and puta-
men, in the cerebral cortex [114], in the presynaptic
terminals of photoreceptor and bipolar cells [115] and in
the plasma membrane of the olfactory cilia [116–118].
High-titre samples may bind to smooth muscles on enteric
tissue sections but spare the plexus myentericus.
Double-labelling experiments with a commercial anti-

body to ITPR1 can be employed to verify the presence
of anti-Sj/ITPR1 antibodies when suspected (see [100]
for an example).

Antigen-specific assays
A CBA employing HEK293 cells transfected with recom-
binant mouse ITPR1 and a dot–blot assay employing rat
ITPR1 purified from brain tissue are available at the au-
thors’ institution [100]. Specific neutralisation of the
IHC reaction by preadsorption of patient sera with puri-
fied native rat ITPR1 has been used to confirm the pres-
ence of anti-ITPR1 [100].

CSF testing
Anti-Sj/ITPR1 has been identified from serum samples.
Whether ITPR1 enters the CNS exclusively from the
periphery or is also produced intrathecally is currently
unknown. So far, testing of serum samples is recom-
mended. However, given that many autoantibodies in
neurological disease are produced intrathecally [119–
122] and that some are occasionally detectable only in
the CSF [123], testing of CSF samples could potentially
be useful in serum-negative cases.
Association with other antibodies
In the patients reported thus far, no association has
been found with anti-Ca/ARHGAP26, anti-Hu, anti-
Ri, anti-Yo, anti-Ma, anti-Ta, anti-CV2/CRMP5, anti-
amphiphysin, ANNA-3, PCA-2, or anti-Tr/DNER,
anti-Homer-3, anti-mGluR1, anti-CARP VIII, anti-
AQP4, anti-myelin oligodendrocyte glycoprotein, anti-
NMDA receptor, anti-AMPA receptors 1 and 2, anti-
GABABR, anti-dipeptidyl-peptidase 6 (DPPX), anti-
LGI1, anti-CASPR2, anti-PKCγ, anti-Zic4, anti-GAD,
anti-amphiphysin or anti-GluRδ2 [100].
Pathogenetic relevance
As passive transfer experiments using IgG from anti-
ITPR1-positive patients have not yet been performed, no
direct evidence for a pathogenic impact of the antibody
is currently available. Indirect evidence suggesting a po-
tential pathogenic role of anti-ITPR1 include its high
specificity for PCs and the association of ITPR1 defects
with SCA, together with the fact that it mainly belongs
to the IgG1 subclass [100] and is usually present at high ti-
tres [100]. On the other hand, ITPR1 is primarily an intra-
cellular antigen and may not be accessible to antibodies
in vivo. It is therefore possible that the antibody has
diagnostic but no pathogenic impact, similar to the
situation in many paraneoplastic neurological syn-
dromes. However, surface localisation has also been
reported under certain circumstances [124–128], war-
ranting further investigation.

Molecular genetics
Mutations in the ITPR1 gene have been implicated in
both SCA15 and SCA29. SCA15, which has to be shown
to be identical to SCA16 [129], is an autosomal domin-
ant, very slowly progressive form of cerebellar ataxia
with adult onset. In addition to ataxia, action and pos-
tural tremor, pyramidal tract and dorsal column involve-
ment and gaze palsy have been noted. MRI revealed
cerebellar atrophy, predominantly affecting the vermis
[130]. In most affected families, large exon deletions
have been found to underlie the disorder [25, 129–131].
Accordingly, diagnosis is based on gene dosage studies
rather than direct gene sequencing in such cases [25]. In
Japanese patients, deletions involving the entire ITPR1
gene [132] and a heterozygous 8581C-T transition
in exon 25 of the ITPR1 gene, resulting in a P1059L
substitution in the ITPR1 gene [132], were identified.
SCA29 is an autosomal dominant disorder characterised

by gait and limb ataxia with childhood onset and delayed
motor and cognitive development. MRI shows cerebellar at-
rophy [133]. Two different heterozygous mutations in the
ITPR1 gene, a 4657G-A transition resulting in a val1553-to-
met (V1553M) substitution and a heterozygous 1804G-A
transition in the ITPR1 gene resulting in an asn602-to-asp
(N602D) substitution, respectively, have recently been found
to underlie SCA29 in two affected families [133].

Anti-CARP VIII
Clinical, paraclinical and epidemiological features
So far, two patients with ACA and anti-CARP VIII have
been reported. The index patient was a 77-year-old woman
who presented with vertigo, severe limb and gait ataxia,
dysarthria and horizontal nystagmus; symptoms developed
within just 1 week [134]. In a second patient, a 69-year-old
woman, intention tremor of the upper extremities, gait
ataxia, cerebellar dysarthria and vertical nystagmus
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developed within 2 weeks; further symptoms included
headache, vertigo and vomiting [135]. While brain MRI
was normal in patient 1, repeat MRI showed progressive
cerebellar atrophy 6 months later in patient 2. Lumbar
puncture revealed a predominantly lymphocytic pleocytosis
in both patients (60 and 290 cells/μl, respectively); CSF-
restricted oligoclonal bands (OCB) were positive in the first
patient and were not tested in the second patient.

Association with tumours
The index patient had been diagnosed with a nodular
recurrence of malignant melanoma around 3 months
before onset of cerebellar ataxia [134]. This is the first
reported case of melanoma-associated paraneoplastic
cerebellar degeneration (PCD). While the patient’s
tumour was not examined for CARP VIII expression,
the protein was shown to be expressed rarely in frozen
sections of malignant melanomas from other patients
[101, 134]. Anti-CARP VIII autoantibodies were not
found in any of 52 patients with melanoma but no
paraneoplastic syndromes [134]. The second patient
was diagnosed with nodular recurrence of an ovarian
papillary serous cystadenocarcinoma that had been
resected and treated with chemotherapy 4 years prior
to onset of ataxia. IHC of biopsy material from that pa-
tient revealed robust expression of CARP VIII in the
Fig. 8 Expression of CARP VIII in the human cerebellum as demonstrated by I
tumour cells [135]. Besides in melanoma and ovarian
carcinoma cells, expression of the normally neuron-
restricted CARP VIII has also been found in colorectal
and non-small-cell lung cancer cells [101].

Outcome and prognosis
The index patient developed a pancerebellar syndrome
despite treatment with IVIG and died 1 year after onset
of ataxia [134]. The clinical evolution was also unfavour-
able in the second patient, who became wheelchair-
bound and developed severe dysarthria despite tumour
removal and IVIG therapy [135].

Antigen
CARP VIII (also termed carbonic anhydrase VIII; encoded
by CA8) belongs to an 11-member family of zinc metal-
loenzymes. While it shows sequence identity to other
members of the cerebellar ataxia gene family and has a
central CA motif, it lacks CA activity due to the absence
of zinc-binding histidine residues [136, 137]. CARP VIII
has been shown to reduce the affinity of ITPR1 for IP3 by
its binding to the modulatory domain (residues 1387 to
1647) of that receptor via its residues 45 to 291 [2]. CARP
VIII is predominantly expressed in PCs (Fig. 8) [2, 101]
and is believed to have an important function in the devel-
opment and maturation of these cells [138, 139].
HC (modified image from the Human Protein Atlas image database [101])
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Immunohistochemistry
In PCs, CARP VIII colocalises with ITPR1 [2], result-
ing in a similar IHC pattern in the two diseases
(Fig. 9). CARP VIII immunoreactivity is highest in
PCs of the cerebellum [2], with lower levels of ex-
pression in other areas of the brain, including the ol-
factory bulb, the lateral nuclei of the thalamus and a
few isolated small neurons throughout the cortex and
hippocampus [134, 140, 141]. Anti-CARP VIII has
been shown to stain intensely the cytoplasm of the
PC somata, the PC dendritic tree and the PC axons
both in rat and human cerebellum [134], as well as
the synaptic terminals in the deep cerebellar nuclei
[135]. Outside the CNS, CARP VIII has been found
in the lung, liver, adrenal glands and, weakly, in the
bronchial epithelial cells and some tubules in the kid-
ney cortex [134, 140, 141]. Of note, CARP VIII anti-
bodies were detectable by IHC using avidin-biotin
immunoperoxidase staining of frozen sections of
paraformaldehyde-fixed rat tissues or of sections of
snap-frozen acetone-fixed human tissues; by contrast,
paraffin fixation abolished the staining [134].

Antigen-specific assays
A CBA using HEK293 cells transfected with human
CARP VIII (Euroimmun) is available at the authors’ in-
stitution for use in scientific studies. The antibody was
first identified by screening a cerebellar complementary
DNA (cDNA) expression library with the patient’s serum,
Fig. 9 Binding of IgG from a patient with CARP VIII-Ab-positive ACA (as de
cerebellum tissue. Human IgG was detected using a goat anti-human IgG s
fluorescence)
subcloning, purification and sequencing of positive pla-
ques. Filters with the purified phage plaques were subse-
quently used for detecting anti-CARP VIII in a second
patient [135]. Fusion proteins produced by subcloned posi-
tive colonies were used for establishing a Western blot
(WB) assay and an IHC preadsorption assay [134]. The
protein was also shown to be reactive with a 29-kDa band
in rat and human cerebellum extract [134, 135]. Finally, a
competitive IHC inhibition assay using patient serum and
subsequently biotinylated anti-CARP VIII IgG obtained
from the index patient has been reported [135]; however,
the latter type of assay requires, as a limitation, concord-
ance in epitope specificity between patients.
CSF testing
In the index patient, anti-CARP VIII autoantibodies
were present at high titres both in serum (1:160,000)
and in the CSF (1:10,000). The high CSF levels indicated
possible intrathecal synthesis [134]. CSF was not ana-
lysed for CARP VIII in the second patient.
Association with other autoantibodies
In the two patients reported thus far, no concomitant anti-
Hu, -Yo, -Ri, -Ma1, -Ma2, -CV2/CRMP5, -sex-determining
region Y-box (SOX) 1, -Tr, -glutamic acid decarboxylase,
-amphiphysin, -VGCC, -LGI1, -CASPR2, -NMDAR,
-AMPAR, -GABABR, -DPPX, -mGluR1, -mGluR5, or
-glycine receptor antibodies were detected.
termined using a recombinant cell-based assay) to formalin-fixed rat
econdary antibody labelled with fluorescein isothiocyanate (green
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Pathogenetic relevance
Although anti-CARP VIII autoantibodies were present at
extremely high titres in patient 1 and were shown to belong
to the IgG1 subclass in patient 2, a direct pathogenic role
of the antibody is unlikely given the intracellular location of
CARP VIII. However, results from passive transfer experi-
ments are lacking thus far.

Molecular genetics
Mutations in the CA8 gene have been found to be asso-
ciated with congenital cerebellar ataxia and mild mental
retardation with or without quadrupedal locomotion 3
[142, 143]. In mice, a deletion in exon 8 of the Car8 gene
has been found in both the autosomal recessive ataxic and
dystonic ‘waddles’ (wdl) mouse [144] and the autosomal
recessive ataxic ‘Rigoletto’ (rig) mutant mouse [145]. Mu-
tant mice show a largely diminished spontaneous PF/PC
excitatory transmission with fewer functional synapses,
PC spines not forming synapses and abnormal PC spines
contacting multiple synaptic varicosities [145]. Absence of
CARP VIII messenger RNA (mRNA) has been noted also
in the atactic ‘lurcher’ mutant mouse [146]. In wdl mice,
Car8 mutations did not influence ITPR1 expression [144].

Note to the reader
In Part 2 of this series, we will review the current know-
ledge on anti-PKCγ-, anti-GluRδ2-, anti-Ca/ARHGAP26-
and anti-VGCC antibody-associated ACA [212]. In Part 3,
we will focus on anti-Tr/DNER-,anti-Nb/AP3B2-, anti-Yo/
CDR2- and PCA-2-associated ACA, discuss diagnostic
pitfalls and provide a summary and outlook [213].
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cDNA: complementary DNA; CDR2: cerebellar degeneration-related protein 2;
CDR2L: CDR2-like; CDR3: cerebellar degeneration-related autoantigen-3;
CF: climbing fibre; CHO: Chinese hamster ovary; CNS: central nervous system;
CSF: cerebrospinal fluid; CTL: cytotoxic T lymphocytes; DAG: diacylglycerol;
DAPI: 4',6-diamidino-2-phenylindole; DNA: deoxyribonucleic acid; DNER: delta
notch-like epidermal growth factor-related receptor; DPPX:
dipeptidyl-peptidase 6; EA2: episodic ataxia type 2; EGF: epidermal growth
factor; ELISA: enzyme-linked immunosorbent assay; ER: endoplasmic
reticulum; FHM1: familial hemiplegic migraine 1; FITC: fluorescein
isothiocyanate; GABA: γ-aminobutyric acid; GABABR: GABA type B receptor;
GAD: glutamic acid decarboxylase; GAP: Rho GTPase-activating protein;
GFAP: glial fibrillary acidic protein; GL: granular layer; GluR: ionotropic
glutamate receptors; GluRδ2: glutamate receptor delta 2; GRAF1: GTPase
regulator associated with focal adhesion kinase 1; HEK: human embryonic
kidney; IB: immunoblot assay; ICC: immunocytochemistry; IIF: indirect
immunofluorescence; IgA: immunoglobulin A; IgG: immunoglobulin G;
IgM: immunoglobulin M; IHC: immunohistochemistry; IP: immunoprecipitation
assay; IP3: inositol 1,4,5-trisphosphate; IRBIT: IP3 receptor-binding protein
released with IP3; ITPR1: inositol 1,4,5-trisphosphate receptor, type 1;
IVIG: intravenous immunoglobulins; IVMP: intravenous methylprednisolone;
kDa: kilodalton; LEMS: Lambert–Eaton syndrome; LGI1: leucine-rich, glioma
inactivated 1; LTD: long-term depression; LTP: long-term potentiation;
mGluR1: metabotropic glutamate receptor 1; ML: molecular layer;
MRI: magnetic resonance imaging; mRNA: messenger RNA; NMDA: N-methyl
D-aspartate; NMO: neuromyelitis optica; NSCLC: non-small cell lung cancer;
NSE: neuron-specific enolase; OCB: oligoclonal bands; PC: Purkinje cell;
PCA: Purkinje cell antibody; PCD: paraneoplastic cerebellar degeneration;
PCL: PC layer; PF: parallel fibre; PIP2: phosphatidyl 4,5-bisphosphate;
PKCγ: protein kinase C gamma; PLCβ3: phospholipase Cβ3; PSD: postsynaptic
density; RACK: receptors for activated C kinases; RhoA: ras homolog gene
family, member A; RIA: radioimmunoprecipitation assay; RNA: ribonucleic acid;
SCA: spinocerebellar ataxia; SCLC: small cell lung cancer; SOX: sex-determining
region Y-box; TRPC: canonical transient receptor potential channel;
TUNEL: TdT-mediated dUTP-biotin nick end labelling; VGCC: voltage-gated
potassium channel; VGKC: voltage-gated potassium channel; WB: Western
blot; WM: white matter.
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